PIPE MATERIAL REQUIREMENTS

Type	Size Limits	Design "n" Values	Other Requirements
Reinforced Concrete Pipe (R.C.P.)	15" to 84"	0.013	Use at least Class IV pipe meeting requirements of AASHTO M 170.
Horizontal Elliptical Reinforced Concrete Pipe (H.E.R.C.P.)	23"x 14" to 53"x 34"	0.013	Use at least Class IV pipe meeting requirements of AASHTO M 207.
Corrugated Steel Pipe, Aluminized Type 2 (C.S.P.)	15" to 60"	0.024	Use at least 14 gage pipe meeting requirements of AASHTO M 36 for Type I pipe. Use only helical corrugations. Aluminum–coated conforming to M 274
Corrugated Aluminum Pipe (CAP)	15" to 60"	0.024	M 196, Type I
Corrugated Steel Pipe – Arch, Aluminized Type 2 (C.S.P.A.)	17"x 13" to 71"x 47"	0.024	Use at least 14 gage pipe meeting requirements of AASHTO M 36 for Type II pipe. Use only helical corrugations. Aluminum–coated conforming to M 274
Corrugated Aluminum Pipe–Arch (CAPA)	17"x 13" to 71"x 47"	0.024	M 196, Type II
Corrugated Polyethylene Pipe (CPP-S)	15" to 48"	0.013	Use pipe meeting requirements of AASHTO M 294-90. Use only type S (smooth interior) pipe with soil-tight couplings. To be used outside the pavement template only, unless prior approval is obtained from Highway Hydraulics Division. Must use granular backfill around pipe.
Non-Asbestos Fiber- Cement Storm Drain Pipe (FCP)	12" to 48"	0.013	C 1450
Polyvinal Chloride Profile Wall Pipe (PPWP)	18" to 48"	0.013	M 304 To be used outside the pavement template only, unless prior approval is obtained from Highway Hydraulics Division. Must use granular backfill around pipe.
Steel Spiral Rib Pipe, Aluminized Type 2 (SRP)	18" to 60"	0.013	Use at least 14 gage pipe meeting The requirements of AASHTO M 36 for Type IR pipe. Aluminum–coated conforming to M 274
Steel Spiral Rib Pipe Arch, Aluminized Type 2 (SRPA)	17"x 13" to 71"x 47"	0.013	M 36, Type IIR, 14 ga minimum, Aluminum–coated conforming to M 274
Aluminum Spiral Rib Pipe (ASRP)	18" to 60"	0.013	M 196, Type IR
Aluminum Spiral Rib Pipe Arch (ASRPA)	17"x 13" to 71"x 47"	0.013	M 196, Type IIR
Structural Steel Plate Pipe (SPP)	60" to 96"	0.021	M 167
Structural Steel Plate Pipe Arch (SPPA)	60" to 96" diameter equivalent	0.021	M 167

Height of Cover Limits:

Use applicable charts in the Highway Drainage Manual to determine height of cover limits. For spiral rib pipe, use same height of cover limits as for comparably sized corrugated metal pipe with $2\ 2/3$ "x $\frac{1}{2}$ " -corrugations. For polyethylene pipe, consult manufacturers literature -however minimum cover shall be 2 feet.

SHA61.1-490 1V-3-13-1 9-1-80					W	MARYLAND STATE HIGHWAY ADMINISTRATION CULVERT ANALYSIS	ID STA	TE HI	D STATE HIGHWAY ADMII CULVERT ANALYSIS	ADMIN	ISTRA	NOI			SHEET.		0F
DESIGNED BY- CHECKED BY-					∓ ٽ	CONTRACT	T.							[.]			
HYDROLOGIC INFORMATION	NFORM	ATION			٠									כחרא	CULVERT STATION	NOIL	
SCS METHOD	THOD			Œ	ATION	RATIONAL METHOD	400		SUMP PA	WEMEN	SUMP PAVEMENT EDGE ELEV. :	ELEV. :		SUMP	SUMP PGL ELEV :	֓֞֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֜֞֜֜֞֜֜֞֜֜֞֓֓֓֓֓֓֓֓֓֓	
AREA	AC.		SM.	AREA - Cw =		AC.			· · · · · · · · · · · · · · · · · · ·	3	-						
RCN. =				ူ ့		MIN.	MIN. "/HR.	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							~] -
tc = MIN. =	1	HRS.		io. 100.		'' HR.	œ œ		INVER	INVERT ELEV=			, S	INVERT ELEV:	LEVE		· .
ino	CULVERT DIMENSION(S)-	MENS	(S) NOI		Z		Ŧ.					ר פ ו	6 F.				
CULVERT TYPE	0						HEAD	WATER	HEADWATER COMPUTATION	ATION					CONTROLLING	LLING	
B ENTRANCE TYPE	CFS	INLET C	HW HW	š	٥	0c+0	o ≱	UTLET P	OUTLET CONTROL	>	٧٤,	3	5	37	1000	SURF	COMMENTS
						2			•		1, 38					ברבי	
٠																	
FORMUL AE:									REMARKS:	RKS:							
OUTLET CONTROL:	LROL:		I	HW= ho+H-LSo	H-LS	0									•		
REFERANCE: PAGES 53 TO 54	GES 53	T0 54	=	H=SfL+(I+Ke)(\frac{\frac{4}{2}}{2g})	(I+Ke)	(² 4 ²) 2g)											

										 						 _
0F		10.1-40 40.1-150											-			
SHEET		0-10	REMARKS						,		-					
	i	RAINFALL FACTORS DURATION:	NLET	ON	\dagger											
	i	INFALL	SYPASS 1	CA	\top											
	í	XX	STREET SPREAD PICKUP BYPASS INLET	%												
2			SPREAD	FT.												
MARYLAND STATE HIGHWAY ADMINISTRATION INLET SPACING			STREET	GRADE							-	2,				
MINIST			CHART	NO.												
WAY ADI ING			CROSS	SLOPE												
HIGHV	0.		INLET	TYPE												
STATE	ACT N		92	CFS												
LAND	CONTRACT NO.	PROJECT	12 if	Į.												
MARY	0		÷°	M.	1											
			Ĕ	₹ S												
			BYPASS	8	_											
2			CA		-											
-3-13-	-),	BY	U	8	1											
SHA-61.1-491 9-1-80 IV-3-13-2	DESIGNED BY-	CHECKED BY-		ACRES	_											
SHA- 9-1-	DESI	CHE	INLET	Š.												

										_					_				_			
SHEET OF		FACTORS:		Remarks																		
		FACTORS:		Capac Full cfs																		
				Time In Pipe Min.																		
		RAINFALL		Vo Vel. ft./sec.												7						
TION			60	Length Ft. f																		
MARYLAND STATE HIGHWAY ADMINISTRATION			Pipe	So Slope L																		
DWIN	NSIGN			Mann-S ing's Coef.		1																
WAY A	DESIGN			Type II		\top																
HIGH	SEWER			Size T		\dashv																
ATE				o s st		\dashv		\dashv														\neg
D ST	STORM		#	iif Rainfall intens in./hr.		+		1													1	
YLAN	S	CT	Runoff	tc Time Ra Conc. int Min. in		\dashv	+	\dashv													1	\neg
MAR		CONTRACT	Year		•	\dashv	+	\dashv		\dashv	-									\dashv		\dashv
		8 =		Z A ECA		+	+		-	\dashv									\dashv	\dashv		\dashv
				-		+	\dashv							,			\dashv	\dashv	\dashv		\dashv	\dashv
			Area	ff CA	-	+	\dashv		-	-							\dashv	\dashv	-		\dashv	\dashv
			outing	a Runoff is Coef.	_	+	+	+		-	\dashv	\dashv			\dashv				\dashv		-	\dashv
1V-3-13-3			Contributing	A Area (+	4	\dashv	-	*											-	\dashv
49.2	Š	.		C Area (##)		\dashv	1	1			-			•		_					-	
SHA-6M-492 9-1-80	DESIGNED BY.	ECKED	Structure	o T	_	+	-	\dashv				-	-	-			-			-	\dashv	
SHA 9-1	DES	HS .	Str	From																		

			3-1	13-4										OMINISTRATION SHEET_OF
DESI	GNED CKED	BY:						NTRAC						TORM SEWERS DATE
			TOR_		_		TI	LE_			,			#FROM FORM SHA-61.1-420
Struc	ture	_	Year	Runoff					Pi	pe				Hydraulic Gradient
rom	То	ΣCA		Roinfall intens	9	Size In.	n # Mann- ing s Coet	Slope	Siops	V _f Vel f1./se	Length Ft.	d _n Norma Depti ft	КЬ	Desciption of Loss Elevation
		*	*	in/hr.	Lis	*	Coet	₩ /*	\ <u>'</u>	11.750	-	"	\vdash	
				 							_			
												_		
												_		
												ļ		
\dashv			_									-		
\dashv				-							-	-		
\dashv							\vdash				-	-		
\dashv							\vdash					-		
-				\vdash			\vdash			-	-	-		
\dashv										_				
-														,
\neg														
\neg														
\neg	-													
_														
-														
_														
\dashv														
\dashv														
\dashv												-		
\dashv									-					
\dashv		-												
+														
\dashv	-													·
+				\vdash										
\dashv														
\dashv														
\forall														
\dashv		\neg												

NOMOGRAPH FOR FLOW IN TRIANGULAR CHANNELS SHA-61.1-430.1

Maryland State Highway Administration

IV-3-7-2

Instructions for Use of Figure 431.0 (a) and (b) "Capacity of Curb Opening Inlets on Continuous Grade"

Figure 431.0 applies to curb or side opening inlets on continuous grades.

The capacity of the inlet depends upon the length of opening and the depth of flow at the upper end of the opening. This depth in turn depends upon the amount of depression of the flow line at the inlet and the cross slope, longitudinal slope, and the roughness of the gutter.

To use figure 431.0 (a) and (b) for curb opening inlets the following information must be know:

- 1. Length (L) of the inlet opening.
- 2. Depth (a) of local flow line depression, if any, at the inlet. (See Page I-4-A-1) of the Highway Drainage Manual
- 3. Design discharge (Qa) in the gutter or information as to drainage area, rainfall intensity, and runoff coefficients from which a design discharge can be estimated. Any carry-over from a previous inlet must be included.
- 4. Depth of flow in normal gutter for the particular longitudinal and cross slopes at the inlet in question. This may be determined from the following figure: 430.1.

Procedure

- 1. Enter Figure 431.0 (a) with depth of flow, y from Figure 430.1, local depression, a, and determine Q_aL_a , the interception per foot of inlet opening if the inlet were intercepting 100% of the flow.
- 2. Determine length of inlet L_a required to intercept 100% of the flow. L_a = total flow Q_a divided by the factor Q_a/L_a .
- 3. Compute ratio L/ L_a where L= actual length of inlet in question.
- 4. Enter Figure 431.0 (b) with L/L_a and the ratio a/y and determine ratio Q/O_a, the proportion of the total flow intercepted by the inlet in question.
- 5. Flow intercepted, Q, is this ratio Q/Q_a times the total flow Q_a .
- 6. Flow carried over to next inlet is $Q_a Q$.

Rev. 1983 SNA 61.1 431.A